Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Short description of portfolio item number 1
Short description of portfolio item number 2
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019
The identification of autistic individuals using resting state functional connectivity networks can provide an objective diagnostic method for autism spectrum disorder (ASD). The present state-of-the-art machine learning model using deep learning has a classification accuracy of 70.2% on the ABIDE (Autism Brain Imaging Data Exchange) data set. In this paper, we explore the utility of topological features in the classification of ASD versus typically developing control subjects…
A. Rathore, S. Palande, J. S. Anderson, et al. View manuscript
Computer Graphics Forum, 2021
Deep neural networks such as GoogLeNet, ResNet, and BERT have achieved impressive performance in tasks such as image and text classification. To understand how such performance is achieved, we probe a trained deep neural network by studying neuron activations, i.e., combinations of neuron firings, at various layers of the network in response to a particular input. With a large number of inputs, we aim to obtain a global view of what neurons detect by studying their activations…
A. Rathore, N. Chalapathi, S. Palande, B. Wang. View manuscript
IEEE 14th Pacific Visualization Symposium (PacificVis), 2021
The mapper algorithm is a popular tool from topological data analysis for extracting topological summaries of high-dimensional datasets. In this paper, we present Mapper Interactive, a web-based framework for the interactive analysis and visualization of high-dimensional point cloud data…
Y. Zhou, N. Chalapathi, A. Rathore, Y. Zhao and B. Wang. View manuscript
Under review at TVCG, 2021
Word vector embeddings have been shown to contain and amplify biases in data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques…
A. Rathore, S. Dev, J.M. Philips , S. Srikumar, et al. View manuscript
Published:
Word vector embeddings have been shown to contain and amplify biases in data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this tutorial, we will review a collection of state-of-the-art debiasing techniques. To aid this, we provide an open source web-based visualization tool and offer hands-on experience in exploring the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, we decompose each technique into interpretable sequences of primitive operations and study their effect on the word vectors using dimensionality reduction and interactive visual exploration.
Published:
Word vector embeddings have been shown to contain and amplify biases in data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this tutorial, we will review a collection of state-of-the-art debiasing techniques. To aid this, we provide an open source web-based visualization tool and offer hands-on experience in exploring the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, we decompose each technique into interpretable sequences of primitive operations and study their effect on the word vectors using dimensionality reduction and interactive visual exploration.
Published:
TBD
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.